Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma
نویسندگان
چکیده
Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma, and targeting polyamine homeostasis may therefore provide an attractive therapeutic approach. ODC1, an oncogenic MYCN target, is rate-limiting for polyamine synthesis, and is overexpressed in many cancers including neuroblastoma. Inhibition of ODC1 by difluoromethylornithine (DFMO) decreased tumor penetrance in TH-MYCN mice treated pre-emptively, and extended survival and synergized with chemotherapy in treating established tumors in both TH-MYCN and xenograft models. Efforts to augment DFMO activity, or otherwise maximally reduce polyamine levels, are focused on antagonizing polyamine uptake or augmenting polyamine export or catabolism. Since polyamine inhibition appears to be clinically well tolerated, these approaches, particularly when combined with chemotherapy, have great potential for improving neuroblastoma outcome in both MYCN amplified and non-MYCN amplified neuroblastomas.
منابع مشابه
Disrupting polyamine homeostasis as a therapeutic strategy for neuroblastoma.
MYC genes are deregulated in a plurality of human cancers. Through direct and indirect mechanisms, the MYC network regulates the expression of > 15% of the human genome, including both protein-coding and noncoding RNAs. This complexity has complicated efforts to define the principal pathways mediating MYC's oncogenic activity. MYC plays a central role in providing for the bioenergetic and bioma...
متن کاملMolecular Pathways Disrupting Polyamine Homeostasis as a Therapeutic Strategy for Neuroblastoma
MYC genes are deregulated in a plurality of human cancers. Through direct and indirect mechanisms, the MYC network regulates the expression of > 15% of the human genome, including both protein-coding and noncoding RNAs. This complexity has complicated efforts to define the principal pathways mediating MYC's oncogenic activity. MYC plays a central role in providing for the bioenergetic and bioma...
متن کاملODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma.
Neuroblastoma is a frequently lethal childhood tumor in which MYC gene deregulation, commonly as MYCN amplification, portends poor outcome. Identifying the requisite biopathways downstream of MYC may provide therapeutic opportunities. We used transcriptome analyses to show that MYCN-amplified neuroblastomas have coordinately deregulated myriad polyamine enzymes (including ODC1, SRM, SMS, AMD1, ...
متن کاملInhibition of Neuroblastoma Cell Growth by Difluoromethylornithine (DFMO) and Bortezomib through Suppression of LIN28 and MYCN
Neuroblastoma (NB) is the most common childhood cancer arising from the nervous system. Many high-risk neuroblastoma (HRNB) patients develop relapse after initial response to induction treatment and overall long term survival remains poor (less than 60%), emphasizing the need for new therapeutic approaches and more effective treatments. Combination therapies present a favorable approach to impr...
متن کاملCathepsin Inhibition Prevents Autophagic Protein Turnover and Downregulates Insulin Growth Factor-1 Receptor-Mediated Signaling in Neuroblastoma.
Inhibition of the major lysosomal proteases, cathepsins B, D, and L, impairs growth of several cell types but leads to apoptosis in neuroblastoma. The goal of this study was to examine the mechanisms by which enzyme inhibition could cause cell death. Cathepsin inhibition caused cellular accumulation of fragments of the insulin growth factor 1 (IGF-1) receptor. The fragments were located in dens...
متن کامل